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ABSTRACT 

This report presents mathematical techniques for calculating dielectrics 
which give rise to prescribed reflection coefficients in certain problems 
of one-dimensional electromagnetic propagation. The techniques are, in 
principle at least, exact. They are based on the use of an equation of 
the Gel'fand-Levitan type for the one-dimensional Schrödinger equation. 
Although no practical applications are given, it is hoped that this report 
will encourage the use of newer techniques in synthesis problems. 
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PROPERTIES OF DIELECTRICS 

FROM REFLECTION COEFFICIENTS IN ONE DIMENSION 

I.      INTRODUCTION 

This report is based on a series of lectures by the senior author and has been only slightly 

revised for this written presentation.    Hence, the report is more informally organized and is 

probably much longer than would be the case if a thorough revision had been made.    Perhaps, 

however, the great detail will enable a novice in the inverse problem to see through the math- 

ematics more clearly. 
The report is concerned with the mathematical problem of determining the character of a 

dielectric scatterer from the reflection coefficient in one-dimensional electromagnetic scattering. 

Closely connected with this problem is the "synthesis problem11 in which one wishes to construct 

scatterers with prescribed reflection or transmission characteristics.    It is not generally known 

that powerful techniques are available.    The objective of this report is to present these techniques 

in a comprehensive fashion for the benefit of those who wish such information. 

The technique which we use is to map the electromagnetic equations into the one-dimensional 

Schrödinger equation.    We then use the Gel'fand-Levitan algorithm to compute the potential and 

the wave function from the scattering coefficient.    The results for the electromagnetic problem 

are then obtained from the mapping. 
The usual procedure for finding dielectrics with prescribed scattering properties is to con- 

sider a family of dielectrics for which the electromagnetic equations can be solved.    The param- 

eters of this family are then adjusted until the scattering coefficients of the exactly soluble prob- 

lem are as  close as possible to the prescribed scattering coefficients.    This procedure is always 

approximate.    The degree of success,  moreover,  depends upon one's cleverness in choosing the 

family of dielectrics. 
By contrast, the procedure for finding the dielectrics in the present report is exact, at least 

in principle.    If computing machines are available, one can approximate the dielectrics as closel- 

as one wishes even when one cannot solve the Gel'fand-Levitan equation exactly. 

This report contains no very practical solutions because the technique which we propose is 

very new {it was developed within the past ten years), and most of the work in the past has been 

concer. ed with more mathematical aspects of the problem.    It is hoped that this report will stim- 

ulate research for electromagnetic applications.    Indeed, its sole purpose is to stimulate, if 

possible,  research which leads to practical applications of the theory. 



II.    SCATTERING AND THE ONE-DIMENSIONAL SCHRODINGER EQUATION 

The time-dependent one-dimensional Schrödinger equation is 

.2 
4^(x,th=i + V(x) 

8x 
^(x,t) 

We require that the solution ^{x,t) be in Hubert space and be quadraticaily integrable 

\        |!/)(x,t)|2 dx <« 

(1) 

(2) 

First, let us assume that the potential function V(x) is bounded everywhere and V(x) -► 0  as 

|x| ^0°.    Later, we shall make V(x) = 0 for  |x| > a.    We proceed to solve the Schrödinger equa- 

tion in the usual manner by separation of variables. 

Let the general solution be 

p«> .   2. -iE.t 
t(x,t) = \        X(x|p) g(p) e'lp ^p +  ^  x(x|E ) g   e       1 (3) 

and choose x(x|p) ancl X{x|E.) so that they satisfy the following equations,  respectively. 

_  "     + v(x) 
dx 

2 2 
X(x|p) = p    x(x|p)        for p   > 0 (4) 

_._L_  +v(x)    XCxlEj.) = Eix(x|Ei)      for E. < 0 
dx 

(5) 

In general, the solutions of these second-order differential equations are not unique unless bound- 

ary conditions are imposed. 
The discrete values E. are called "point eigenvalues," and the theory of Hubert space re- 

quires that they be chosen so that 

j"°    X!Mx|E.)xix|E.) = A^ (6) 

where A. > 0. 
With this "boundary condition," the x(x|E.) become unique except for a normalization con- 

stant.    When the point eigenvalues E. are chosen so that (6) is satisfied, the corresponding x(x|E.) 

are called "proper eigenfunctions."   Next we need boundary conditions which will determine the 

X(x|p) uniquely.    Since we are interested in solving scattering problems,  we wish to impose 

boundary conditions such that the resulting set of x(x|p) will give a "simple" description of scat- 

tering problems. 
In what follows, let us assume that V(x) is bounded everywhere and that V{x) = 0 for |x| > a. 

Let us take the following boundary conditions: 



For p > 0, 

For p < 0, 

X(x|p) 

X(x|p) = 

X{x|p) = 

dx|p) 

ipx 
+ b(Ple-ipx     forx<_, 

42^ 

eipx,
[ r(p) e-ipx 

\'Z7r 

s(p) 

UT\ 

for x > a 

for x > a 

for x < ~ a 
Z-n 

Let us solve the specific initial value problem for which 

g. = 0     for all i      , 

g(p) = 0      for all p < 0 

Then from (7) and (3) we obtain a particular solution: 

!/»  (x,t) p 

yx,t) 

£ 
,ipx 

^ipx 

g(p) e-ip * dp + J" 

•  2t 
t(p) g(p) e"lp     dp 

-ipx •  2t 
f b(p) g(p) e-lp     dp 

(V) 

(8) 

for x < — a 

for x > a 

(9) 

For any fixed P, the first integral in the expression for yx,t) for x < -a and the integral in the 

expression for i> (x,t) for x > a reduce to expressions representing waves moving in the positive 

x-direction.    The second integral in the expression for yx,t) for x < -a reduces to an expression 

representing a wave moving in the negative x-direction.    We may think of the integrals as super- 

positions of such waves.    With this interpretation in mind, the b(p) are called the reflection coef- 

ficients for p > 0,  and the t(P) are the transmission coefficients for p > 0.    Hence,  given the 

boundary conditions (7) we now have defined x(x|p) uniquely for p > 0. 

In a similar manner,  we can solve the initial value problem for which 

e, - 0      for all i 

g(p) = 0      for p > 0      , 

and we define x(x|p) uniquely for p < 0 with the help of the'boundary conditions (8).    The r(p) and 

S(p) are called the reflection and transmission coefficients, respectively, for p < 0. 

Let us call v(X|p) defined for p > 0, x+(x|p) and x(x|p) defined for p < 0, X Jx|p).    By analyUc 

continuation we may define x+(xip) for p < 0 and x.(x|p) for p > 0.    It can then be shown that 

but 

X+(x| -P) :(x|p) 

X_{x|-p) = x!(x|p) 

X+(xl-p) ± X.(x|p) 



■ 

Also,  by analytic continuation it can be shown that 

b(-p) = b*{p)| 

t(-p) = t*(p) j 

r{-p) = r*(p) 1 

s(-p) = s,;s(p)) 

for p > 0 

for p < 0 

and 

s(p) = t(p) for all p 

Two other relations satisfied by the reflection and transmission coefficients are 

|b(p)|2 + |t(p)|2 =1      forp>0      , 

|r(p)|2 + |s{p)|2= 1      for p < 0 

These seem to imply consei'vation of energy.    Also, 

lim b(p) = 0 
PH 
lim t(p) = 1 
pl-^o 

in the upper half plane.   This is always true.   When V(x) dies down very rapidly,  it can be shown 

in addition that b(p) has poles at the points p = i /—E.; that is, b{p) has poles corresponding to 

every point eigenvalue E..    This, however,  is true only when V(x) dies down sufficiently rapidly. 

Examples to illustrate this will be given later. 

Once the )((x|E.) and x(x|p) have been defined with the help of the boundary conditions (6), 

(7) and (8),  we find that they satisfy the completeness and orthonormality conditions.    If chosen 

differently,  the x(x|E.) and x(x|p) would not satisfy these conditions. 

The orthonormality conditions are 

r X';:<(x|p) xlxlp1) dx = ö(p - p') 

Y*{X|E.) X(X|E.) dx = A.Ö.. 

X':'(x|p) xlxlE.) dx= 0 

The completeness relationship is 

(10) 

r X!;<(x|E.)x(x'|E.) 
Xv(x|p) xlx'lp) dp +  2J  X.  6(x -x') (11) 

The satisfaction of these conditions leads to a complete analogue with Fourier transform theory. 

Suppose a function f(x) is in L  .    Then as a result of the completeness theorem we may ex- 

pand f(x) as 



■ 

^i.pj:,..",.-.,-.^.-----!'^-.,. 

where 

f(x) 
pOO 

J       X(x|p) g(p) dp + Y, X(x|E.) g.      , (12) 

g(P) =\ X*{x|p) f(x) dx      , 

/■»OO 

Ag^   \       x';,(x|E ) f(x) dx 
^ -co 

H-aiice v/o n.ay \/L itt; 

f(x) 

Also suppouo that 

Then 

g(p); gi 

ii{x)<i==>gi{p); g.1 

t2(x)<==ä>g2(p); g,2 

C       f1>:i{x) f2(x) dx =   \       g1,:t(p) g2(p) dp + J g.li;'g.2A        . (13) 

But this is simply Parseval's theorem. 

In the solution of scattering problems we are interested in the reflection and transmission 

coefficients.    In particular, foi- p > 0,   |b(p)i    and for p < 0,   |r(p)|    give us the relative prob- 

ability that a particle of momentum p  will be reflected.    Similarly,  for p > 0,   | t(p) |    and for 

p < 0,   I s(p) I    give us the relative probability thai a particle of momentum p will be transmitted. 

The relations 

|b(p)|2 + |t(p)|2 = 1       , 

|r(p)|2 + |s(p)|2=l     , 

state that one event or the other will occur.    To determine the reflection and transmission coef- 

ficients,  Eq.(4) must be solved.    This can be done in the usual manner by matching boundary 

conditions where V(x) vanishes. 

For an alternate integral equation technique,  we write 

X(x|p) 
3lpx 

Jzir 
i  r eiipi 
IPI J.„ 

V(x') x(x'|p) dx' (14) 

This expression for x(x|p) satisfies the wave equation and all boundary conditions. 



■ 

For example, take p > 0.    Then (14) gives 

X(x|p) = . 
Nit ^ 

IPX .    -ipx   p« .       , 
- \        elpx   V(x') x(x'|p) 

J -on 
ix' 

X(x|p) 
=ipx Mil -ipx'  \/{x') xlx1 

The expressions (15) may be written in the form (7) if 

b(P)=-N/lH       e^' V(x')x(x'|p) 

we choose 

cb: 

t(p) = 1 
/7i r 

2  p   J_ 
-ipx" V(x') x(xl|l 

By analytic continuation, b(p) and t(p) can be defined for 

Similarly, take p < 0.    Then (14) gives 

)) dx' 

p < 0. 

ipx 
,   i   v      e ^     ,i      -ip 

xr gipx   y^,) X(xi|k) dx' for x > a 

The expression (17) may be written in U e form (8) 

r(p)=  J|| J"    eipxl V(x')x(x'|p)clx 

p) dx'      for x < — a 

if we choose 

s(p) = 1 + Jz p y e"lpX   V(x') x(xl|[ 

By analytic continuation,  r(p) and s(p) can be defined fo 

As an example of the solution of the direct problem 

tion, lot us consider the delta function potential V(x 

are no point eigenvalues.    Hence gj = 0 for all i.    From 

b(p)=-j2p 2Bx(0|p) 

«P'1  ^il F  2BX(0|P) 
for p 

From (18) 

r(p) =  ,/f ^ 2Bx(0lp) 

s(p) = 1 + 711 2Bx(0|p) 

for p < 

From (14), 

X(0|p) for p > 0 
ZTT (p + IB) 

p) dx1 

for x < — a 

for x > a 

(15) 

for p > 0 (16) 

(17) 

) dx' 

for p < 0 (18) 

- p > 0. 

of the one-dimensional Schrödinger equa- 

B6(x),  and let us take B > 0 so that there 

(16), 

■ 



x(oip) 
IZn (p - iB) 

for p < 0 

Hence, 

b(p) = -iB 
p + iB 

t(p) = P 
p + iB 

r(p) = 
iB 

p - iB 

c(r,\ - P 
p - iB 

for p > 0 

for p < 0 

By analytic continuation 

b(-p) = 

t(--p) = 

r(-p) = 

s(-p) = 

-iB IB 
-p + iB p - iB 

-P P 
-p ■:- iB p- iB 

iB -iB 
-p - iB p + iB 

-P P 

- b*(p) 

= t*(p) 

= r*(p) 

s*(p) 

for p > 0 

for p < 0 

-p -TB      p + iB 

Hence s(p) = t(p) for all p and r(p) = b(p) for all p, the latter being so only because of the sym- 

metry of the delta function potential.    Also, 

|b(p)|2 + |t(p)|2 
2

    X   T32 p    + B 
JL 

2   X  "U2 
ID      + B 

1      for p > 0 

|r(p)r + |s(p)r 2 2 
p    + B p2

+B2 
for p < 0 

III.   EXAMPLES OF ELECTROMAGNETIC  PROBLEMS WHICH  CAN  BE  MAPPED 
INTO A ONE-DIMENSIONAL SCHRÖDINGER EQUATION 

We shall next give three examples of one-dimensional electromagnetic theory.    It will be 

shown that with an appropriate mapping each example can be reduced to a one-dimensional 

Schrödinger equation. 

A.    Reflection and Transmission of Light of a Fixed Frequency 
at Varying angles of Incidence by a Dielectric Slab 

Consider a medium in which the dielectric constant e - <r{x) is a function of one variable x 

only and is independent of time.    In order to make the discussion concrete,  we assume that 

e(x) = 1 for x < a and x > b.    Many of the results will still hold if e(x) dies down sufficiently rap- 

idly outside the range a < x < b. 
Consider a ray of light impinging on this material, the angle of incidence being a.    The plane 

of incidence is the xy-plane;  the z-axis projects out of the paper (Fig. 1).   We are interested pri- 

marily in the amount of energy reflected and transmitted by the material.    It will be shown that, 

for a ray polarized so that the electric field is parallel to the z-axis, the electromagnetic equation 

■ 



, ■ 

Fig. 1. Ray picture showing reflection 
and transmission of light by a dielectric 
slab. 

can be mapped into the Schrödinger equation and the b(p) and t(p) of this associated Schrödinger 

equation will turn out to be essentially the same as the electromagnetic reflection and trans- 

mission coefficients. 

Using Gaussian units,   Maxwell's equations in a source-free region are 

V • D = 0 

V  •   B ^ 0 

V X E = c at 

-     —      C   9t 

where  c  is the free-space velocity of light.    We also have the constitutive equations 

B = iiH 

U = c(x) E      . 

(19) 

(20) 

W L   .osume that [i = |i   ,  where p.    is the permeability of free space and, to eliminate time depend- 

ence,  write 

K(x,U - L:(x) e -iwt 

-iujt 
H(x,t)     H(x) e iw'      . (21) 

The bar under  x   indicates dependence on both  x  and y,  while  x  without a bar,   such as in f(x), 

indicates dependence on the one variable  x  alone.    Substituting in (19) from (20) and (21),  we 

obtain 

V  ■  c(x) E(x) = 0 

V •  H{x) = 0 

V x E(x) = —^— H(x) 

V x H(x) = 

Proceeding in the usual manner 

E(x) 

V x V X E(x) = VV •   E(x) - V  E(x 

u   t (x) ü/ 
V X H(x) l(x) 



But 

V ■   e(x) E(x) = E(x) ■  Ve(x) + e(x) V •  E(x) 

Hence, 

and 

V •  E{x) 
-E(x) ■ Ve(x) 

€(x) 

Z E(x) + 
|ioc(x) 0) 

E(x) = - 5 
E(x) ■  Ve(x) 

c(x) 

Let us wt'ite 

where 

E(x) = En(x) + ip(x) 

En{x) = [0,0,Kz(x)] 

is the component of the electric field normal to the plane of incidence, and 

E (x) - [iyx), Ey(x), 0) 

is the component of the electric field parallel to the plane of incidence.    Then Ez(s) satisfies the 

equation 

where 

V2E  (x) +nZ(x) k2EJx) - 0 
—      z — ^ 

k= ^ 
c 

(22) 

n(x> = ^o€(x)      ' 

The boundary conditions we wish to impose on Ez(x) are 

Ez(x) 

iyx) 

ik-x 

,,.    ik- x I   e - - 

V> e 
ik- x 

ZTT 

for x ^ a 

for x > 1) 
ZTT 

(23) 

(24) 

where  k and  k1 are vectors given in terms of their components by 

k = (k cos a,  k sin cv , 0) 

k' = (-k cos a ,  k sin a , 0) 

Then the first term in the expression for iyx) for x > a represents a wave moving in the direction 

(cosa,  Bina.O),    We may consider this to be an incident wave.    The second term represents a 

wave moving'in the direction (-cosa,  sina.O),  i.e.,  in the direction of specular reflection.    It 

represents a reflected wave.    B is the reflection coefficient, and 1B|    gives the relative pro- 

portion of energy reflected at the frequency co.    Similarly, the expression for Ez(x) for x > b 



represents a wave moving in the direction (cos a, sina.O).    It represents a wave transmitted 

through the material.    T is the transmission coefficient, and |T|
2
 gives the relative proportion 

of energy transmitted at the frequency w. 

We shall now show that with the boundary conditions (23) on E (x) we can reduce equation 

(22) to the Schrödinger equation by an easy mapping and identify B and  T with b(p) and t(p), 
respectively. 

Let us consider a fixed frequency w > 0.    To separate spatial variables we write 

TT,  ,   .        ,   ,    ik sina y Ez(x) = u(x) e y      . (25) 

We also define 

p = k cos a 1 

2    2 ? I      ' (26) 
V(x) =-k^n   - 1) =-k; [£{x) HLO - 1) 

Since OJ is fixed,  p is a function of the angle a.    Usually, we will be dealing with c(x) > 1,  and 
hence V(x) < 0. 

Substituting in Eq. (22),  we obtain 

[-4 +v(x; 
,2 

u(x/ = p  u(x)       , (27) 

where p   > 0,  but this is just the time-independent Schrödinger equation. 

Suppose the boundary conditions we impose on u(x) are 

eil)x       b(n) e"ipx 

u(x) =-5  + EiHL?      forx<a      , 
\rZTr \rzn 

■JZrr 

Then from (25) and (26) wo obtain 

ipx 
(28) u(x) =  t(p) e " for x > b 

i(kcosaxfksinuy) i(-kcos ax+k sinay) 
E  (x) = + 2i£L5  

z'" sfZÜ V27 

„ik- x       . ,  .    k1- x e b(p) e-   -       r -       + -i*-:—       for x •- a 
'•JZri \fZir 

.,  ,    i(k cos ax+k sinoy) 
E (x) = -y£L2  

z — 
Zn 

.,   ,    ik•x tip) e — — r ,  . for x > b 
VIS 

If we identify B  with b(p) and  T with t(p), these are just the boundary conditions we wish to im- 

pose on E (x).    Hence,  we can solve this particular electromagnetic problem by using the mapping 

(26) to find the associated Schrödinger equation and identifying its reflection and transmission 

coefficients with the reflection and transmission coefficients of the electromagnetic problem. 

10 



We might note again that in quantum mechanics p represents momentum and —« < p <«,    How- 

ever,  p  in Eq. (27) as defined by the mapping (26) is a function of the optical angle of incidence 

a,  and this imposes restrictions on the range of p.    The technique is valid for complex Q and 

might therefore be used to handle more complicated wave fronts. 

B.    A Transmission Line Problem 

The second example we shall give is a transmission line problem.    It will differ from the 

above example which dealt with a fixed frequency and varying angles of incidence in that now we 

shall consider a fixed angle for varying frequencies. 

Consider a transmission line with distributed impedances L(z) and capacitances C(z).    The 

transmission line equations are 

av(z.t) 
8z 

ai(z,t) 
Sz 

■L(z) 
9I(z,t)   ' 

at 

-C(z)  ^M 
(29) 

where V(z,t) and l(z,t) are the potential and the current,  respectively.    For the special case 

L = L o 

C = C , 

we obtain at once 

32V(z,t) L C o   o 
8  V(z,t) 

dz at 

This has a solution of the form 

V(z,t) = F(z - vt)  f g(z + vt) 

where 

1 

JL C V    o   o 

Apparently,  we have again a wave propagation problem in which reflection and transmission coef- 

ficients are of importance.    We propose to show that this problem also can be reduced to the 

Schrödinger equation. 

Let us write 

V(z,t) = V(z) e 
-ia)t 

-iüjt 
I(z,t) = I(z) e 

onstant,  i.e.,  L = L  .    However, for a < 

function of z.    For z < a and z > b we take  C to be a constant C = C   .    Then 

As above,  we take  L to be a constant,  i.e.,  L = Lo.    However, for a < z < b we take  C to be a 

V(z) 
8z 

3I(z) 
az 

= iwL, I(z) 

iwC(z) V(z) 
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v;:>i    ,;,, ^i.     If. .:W:;.«ViW;.    ^^  ,„:,,,,,:,;„„„;,,, „„,lK(..i„ar,„,ft„„,.;,„., 

and hence, 

^^   + Cü
2
L  C(z) V(z) = 0      . 

2 2 We define k    = Cü  L C    and impose the following boundary conditions on the solution 

(30) 

■ 

V(z) 

V(z) 

ikz       ,,., .    -ikz 
e       B(k) e  

2-n \IZir 

T(k) eikz 

for z < a 

for z > b 
VZTT 

We shall show that if we can solve a certain Schrödinger equa+ion then we can solve (30) 

to the boundary conditions (31).    For convenience, let us rewrite (30) in the form 

^^   f k2
t(z) V(z) = 0      , 

where 

(31) 

subject 

(32) 

e(z) 
C(z) 

Next let 

7|(z) - el/4(z) 

and introduce a new independent variable x  related to  z  by 

dz -2,   , 
1R - "    (z) 

(33) 

2,   .       dx 

We also introduce a change of dependent variable, 

u = i)V      . 

(34) 

(35) 

Then 

dV _  1 du u. d]) 
dz ~   ?)   dz 2  dz 

,2 
d'-\       1  d-u       2   dg du       n   dj      2u   ,^,2 
,2      ^ ^  2 2  dz  dz       ,2       2 3   Mz' 

dz '   dz T| i)     dz i) 

Also, 

du        2  du 
dz = ''     dx 

du 4  d u 
= V 

3  du  dn 

dx 
+ 2r,     a- dx dx 

12 
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da _    2 drj 
dz       '     dx 

2 2 
d 7j        4d7)   , _  3 . dn ,2 
TT =•"    72 +2''   «di' 
dz dx 

Substituting in (32), we obtain 

i 4 d u   , ,   3  du dii 
1       ,   2   + 2"     dx  d^ 

l       dx                              J 

U        4  d  ii    ,   ,   . 
--2    ')   —2 + 2,i 

ii     l      dx 

2    .  2  dn ,  ,   2  du, 

, dr; ,2 
dx' + —  (7) 

di) ,2        2  4 u       n 

dx i) 

From this we have 

i2 
d__u 

dx" 

,2 
u  d  ii 
1J    .   2 
'   ax 

2 
f k u 

We write this as 

dx 
+ q(x; u(x) k2u (36) 

where 

,  .       1   d  77 
q(x) =  - -^ 

1   dx 
(37) 

Equation (36) is the Schrödinger equation corresponding to Eq. (30) or (32).    Note that q(x) is in- 

dependent of frequency.    Tncidentally,  the mapping is possible only if e{z) is continuous. 

We shall now turn our attention to an investigation of the mapping and the shape that q(x) will 

have for a realistically chosen f(z). 

A first observation is that x  is a monotonic function of z.    Also,  since the first-order dif- 

ferential equation relating  x to z allows for one constant of integration,  we may put x = A when 

z = a; then z = b will correspond to some value of x - say, x = B.    The mapping is not unique 

since A can be chosen arbitrarily, but a change in A  merely implies a shift in x. 

Consider a particular e(z) such that e(z) is some function of z for a < z < b. and E(Z) = 1 for 

z v a and z > b. Then we want to determine first how x depends on z for z < a and z > b. Since 

x is a monotonic function of  z, 

z < a corresponds to x < A, 

z > b corresponds to x > B. 

From (34),  we have at once that 

x — A = z — a      for z < a, i.e.,  x < A 

x — B = z — b      for z > b, i.e., x > B 

Suppose Fig. 2(a) represents a typical e(z).   It is essential that €(z) be continuous for the mapping 

determined by (33),  (34) and (35) to be possible.    However,  it is not necessary that the derivatives 

of e(z) be continuous.    Given an e(z) as shown in Fig. 2(a), i)(x) would have a shape as shown in 

13 
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<(z) 

\ 

1 1             . . 
a b 

i)(x) 
|3-3T-l(IJI(a-d| 

X 
i 1 
A B 

Fig. 2. e{z) as a function of z and, corresponding to this e(z), 

the general shapes taken by r\{x.), dr|(x)/dx and d4i(x)/dx2 as 

functions of x. 

Fig. 2(b).     Furthermore,  d7)/dx and d t)/dx    would have shapes as shown in Figs. 2(c) and (d), 

respeclively.    Note thai Figs. 2(b),  (c) and (d) are not the exact representations of j)(x),  dr)/dx, 
2 2 

and d  T)/dx    for e(z) as shown in Fig. 2(a),  but merely are intended to show the general shape of 

these functions for the given e(z). 

q(x) = (l/r)(x)) (d T)/dx ) will have a shape very similar to that of d r)/dx  ,  the important 

thing being that it will have two maxima and one minimum.    Hence,  if we wish to solve our trans- 

mission line problem through its associated Schrödinger equation for a realistic e(z) as shown in 

Fig. 2(a),  we must solve the Schrödinger equation for a q(x) such as shown in Fig. 3.    We might 

note that,   if the bumps in Fig. 3 were replaced by delta function like discontinuities such a q(x) 

would still correspond to a realistic £(z).    Since q(x) = 0 for x < A and x > B,  we again have a 

scattering problem and shall look for solutions of the Schrödinger equation which describe scat- 

tering.    We shall show that it" we can solve this scattering problem,  we will also have solved the 

transmission line problem and will be able to relate the coefficients B(k) and T(k) to the trans- 

mission and reflection coefficients of the Schrödinger equation.    Let us take as solutions of the 

Schrödinger equation 

ikx 
u(x) 

u(x) 

b(k) e 
•il-.x 

t(k) e 
ikx 

ZTT 

for x < A 

for x > B 

(38) 

But when x < A we have z < a; T)   =1 and therefore V(z) = u(x).    Also.,  x - A Hei.ce 

14 



V(z) 
eikz e-ik(a-A) 

Zrr 

+ b(k) e'ikz eik(a-A) 

-ik(a-A) 
feikz  + b(k) e-ikz e2ik(a-A) 

A^ZTT 

^, r  ikz      „,, ,    -ikz 
;-ik(a-A.) _e  + B(k) e 

[\IZTr N/ZTT 

where 

Similarly 

Hence, 

, „ ,    Zik(a-A) 
B(k) = b(k) e     v       '      . 

when x > B we have z > b; 7, =" l and therefore V(z) = u(x).   Also, now x - B = z - b. 

v(z) =  m eikZ  e-iMb-B) 

ikz t(k) elkz    -ik{a-A) e-ik(b-B)+ik(a-A) 

z- 

_  T(k) eikz     -ik(a-A) 

2- 

where 

T{k) = t(k) e 
ik(a-b+B-A) 

Fig. 3.   q(x) as a function of x. 

The factor e"11^'^ merely changes the incident wave.    Hence, we can obtain a solution of our 

transmis..  on line equation (32) subject to the boundary conditions (31) with the help of the map- 

ping given by (33),  (34) and (35).    We solve the Schrodmger equation (36) subject to the boundary 

conditions (38) and obtain the B(k) and T(k) of the transmission line problem from the reflection 

coefficients b(k) and the transmission coefficients. t(k) of .he solution of the Schrödinger equation 

by using the relationships 

B(k) = b(k) e2ik(a-A> (39) 

T(k) = t(k) eik(a-b+B.A) 

In practice, reducing the transmission line equation to the Schrödinger equation involves the fol- 

lowing steps.    Given c(z), we use (33) and (34) to find x as a function of z.    The choice of the 

15 
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 L . 1—* 

|}-3T-8033(.-J)| 

1 

1/4 

  1 

1 
A 

1 
B 

la 
dxZ 

1 

A XB 

Fig. 4.    e(z) as a function of z,  and the corresponding general shapes 

of nW» dn(x)/dx and d^W/dx   as functions of x. 

i  q(>l 

|3-3t-8034] 

Fig. 5.   q{x) as a function of x. 
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constant of integration A is arbitrary but is usually determined by symmetry considerations. 

We now have e and ?] as functions of x and can use (37) to compute q(x). 

Next,  we shall generalize the above problem slightly.    Suppose we again take the transmis- 

sion line equation (32) and let e(z) = 1 for z < a; e(z) = some function of z for a < z < b; but 

e(z) = e? = constant =f= 1 for z > b. 

We shall require that V(z) satisfy the following boundary conditions: 

V(z) 

V(z) 

ikz 

/ZTT 

B(k) e 
ikz 

•v/Zrr 

ik. MUZ 
T(k) 

ZTT 

for z < a 

for z > 1) 

(40) 

The mapping is independent of the boundary conditions,  and we shall use the same mapping as 

above.    Again,  we choose z = a to correspond to x = A, and since x is a monotonic function of 

z we have z < a corresponds to x < A.    Also,  since for z < a we choose e(z) = 1,  we have as be- 

fore x - A = z - a for z < a and x < A.    z = b will correspond to some value of x - say,  x = B 

and z > b will correspond to x > B.    However,  for z > b we now have €(z) = e2 and hence r\ = e,' 

Therefore, 

1/4 

dx 
dz 

and 

^(z-b) 

Again let us assume a simple realistic shape for e(z) such as shown in Fig.-1(a).    The approxi- 

mate shapes for i),  dl)/dx and d i)/dx   are shown in Figs. 4(b),  (c) and (d).    q(x) will of course 
2 2 again have a shape similar to that of d »)/dx  .    Therefore,  in this case we shall be dealing with 

a q(x) having a shape like that shown in Fig. 5. 

We solve the Schrödinger equation for this q(x) subject to the boundary conditions (38).    For 

x < A we have z < a; r\ = 1;   V(z) - u(x); and x - A = z - a as before.    The boundary conditions on 

V(z) for z < a are also the same as above.    Hence, again we obtain 

B(k) = b(k) e 

For x > B we have z > 1); i; 

2ik(a-A) 

1/4 1/4. .y   ;  V(z) -■ u(x)/ta
/   ; and x - B = ^ (z ~ b).    Hence, 

V(z)=^ 
^^    ik(B-jr2b) 

cVVzi 

,„ .    "V^       ...     ,,    ik(a- /r7b+B-A) 
t(k) e _    -ik(a-A) V   2 

;y
4^ 

In this cast, the transmission coefficient t(k) of the associated Schrödinger equation and the T(k) 

of the transmission line equation are related in the following manner: 
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t(k)      i^-^b+B-A) 
T(k) = -TO e 

e2 

and again we are able to solve the transmission line problem by mapping it into the Schrödinger 

equation. 

C.    Reflection and Transmission, for Varying Frequencies, 
of a Plane Wave Normally Incident on a Dielectric Slab 

Finally, we shall show that Eq. (32), the transmission line equation,   also occurs in a simple 

electromagnetic problem.    In this case, k and e are defined differently,  of course. 

|}-37-S035 | 

Fig. 6.   Plane wave incident normally on a slab 
of dielectric constant, e(z). 

Consider normal incidence of a plane wave traveling in the z-direction on a slab of material 

whose dielectric constant e = e{z) varies in the z-direction (Fig.'6).    It was shown previously 

that,  assuming a time dependence e"1"   and using Maxwell's equations and the constitutive equa- 

tions,  we find that the electric field E(x) must satisfy the equation 

y               u  e(z) Ul 
V   E(x) + -2-^  E(x).-V[^

);(g
g(z>] (41) 

Since we are now assuming that e = e(z) varies in the direction of propagation and since E(x) must 

be normal to this direction, we see at once that the right-hand side of (41) vanishes. 

Let us assume further that 

E(x) = [Ex(z),0,0]      . 

Then we have at once 

92E  (z)       [i uZ 

 T-   + -V <(*> E
X(Z' = 0     • 

9z c 

Similarly, if we had assumed that 

E(x) = [0)E (z),0]      . 

we would have obtained the same equation for E  (z),  namely. 

y^EU)    %"2 

9z 
,     e(z) Ey(z) = 0 



We can write either of these in the form of the transmission line equation (32): 

az 
,       + k  6(z) Ev(z) = 0 (42) 

where now v = x or y, 

k   = 

e(z) 

2 ro o 

c 

£(z) 

and e    is the dielectric constant of free space., 
o 

IV    THE INVERSE PROBLEM FOR THE SCHRODINGER EQUATION - 
THE GEL'FAND-LEVITAN ALGORITHM AND ITS PROOF 

The direct problem of solving the two lime-independent equations arising from the Schrödinger 

equation has been treated earlier in this report. 

To recapituJate briefly in this case specifying 

(a) V(x), 

(b) A. the normalization of x.(x|E.): 

vf IxCxJE^r dx 

(c)   The boundary conditions on x(x|p): 

lim    x(x|p) 

lim  x(x|p) 

ipx 
b(p) e 

-ipx 

t(P) e1'« 

ZT7 

for p > 0 

lim   x(x|p) = -— ^ 
eipX   L r(P) e 

-ipx , 

S/ZTT 

lim    x(x|p) 

we solve the two equations 

. s(p) e 
ipx 

ZTT 

for p < 0 

^ 1 9 7 
ir  + V(x)    X(x|p) = P  X(x|p)        Tor p    >0 
dx 

,2 
[_ Jii  + v(x)] x(x| E.) = Eix(xl E^      for Ej < 0 
I.    dx ' 

and determine E.. b(p), t(p), r(P).  s(P). x(x| p) and x(x| E.).    It was also shown that the X(x|p) and 

X(x|E,) thus determined satisfy the completeness and orthonormality conditions,  and hence., that 

any function f(x) can be expanded in the following manner: 
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poo 

f(x)  = J       x(x|p) g(p) dp + ^ x(x|E.) g.      , 

where 

g(p) -z 
Aigi = f 

X*(x|p) f(x) dx 

Xv(x|E.) f(x) dx 

We shall next discuss the inverse problem, namely, the problem of determining V(x) from a 

knowledge of A.,  E., b(p) and the boundary conditions on x(x|p).    This problem was first treated 

by Gel'fand and Levitan.    However, they dealt with the radial equation for 1=0,  and we shall be 

dealing with the one-dimensional equation for the range -<*> < x < <« . 

We shall first give the Gel'fand-Levitan algorithm and then proceed to the proof.    The proof 

will be given in two parts. 

Gel'fand-Levitan Algorithm 

If,  given b(p),  E., and A.,  we define 

R(x) 2* J b(p) e"lpx dp + ^ A. 
(43) 

and assume that the Gel'fand-Levitan equation for x >- y, 

-•x 
K(x.y) = -R(x +y) -r K(x,z) R(z +y) dz 

has a unique solution for K(x,y), then the potential V(x) is given by 

V(x) = 2-^[K(x,x)]      , 

and for p > 0, 

(44) 

(45) 

X(x|p) = 
^ipx b(p) e 

■ipx 

ZTT •Jzii 

rEy 

K(x,y) [elpy +b(p) e"ipy]dy 

/-E.x      px 
X(x|E.) = eN      1    + ^       K(x,y) e" 

(46) 

In principle, the inverse problem which requires the solution of a linear integral equation - 

the Gel'fand-Levitan equation - is no more difficult than the direct problem which requires the 

solution of a linear differential equation.    We note that for fixed x the Gel'fand-Levitan equation 

is a Fredholm equation and hence is of a well understood standard form.     __ 

Also, as x--« we have R(x) ■* 0.    Each of the terms of the sum S  e'*'      1 /Ai certainly tends 
i 

to zero as X-* -«o, and with the help of the Riemann-Lebesque lemma it can be shown that the 
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integral in the expression for R(x) vanishes as x - -".t   The given b(p) will of course satisfy the 

relations b(-p) = b^lp),     lim    b(p) = 0 in the upper half plane.   We might point out that as a 
|p|—«o 

consequence of the first of these two relations R(x) is real and this in turn implies that K(x,y) 

is real. 
In general, it is necessary that b(p), E., and A. are specified before the Gel'fand-Levitan 

algorithm can be applied. However, for very short range potentials b(p) and Ej are sufficient 

and A. need not be given. 
Let us specify two functions 0(x|p) and ^(x|E.) which are solutions of the equations 

(47) 

_   d     + v(x)l   ^x|p) = pZ^ixlp)        for p2 > 0 
dx^ J 

f _ -A_ + V(x)|  0(x | E.) = E.iMx 1 Ej)      for Ej < 0 

The !Mx|E.) are to be identical with the x(x|E.) and hence are determined by imposing the 

same boundary condition on them as was imposed on the x(x|E.), namely, 

\       ^(xlE.) i^xlE.) dx = A.6. 

However, the boundary condition 

ipx 
lim    iMx|p) =      for all p 

x-»-«> N/ZTT 

(48) 

which we impose on the 0(x|p) is different from the condition imposed on x(x|p).    One reason tor 

the choice of this boundary condition is convenience.    Also, with this condition the ^x|p) are 

analytic functions for all p.    The two independent solutions !/-(x|p) and !Mx|-p) may now be super- 

imposed and we write 

X(x|p) = !Mx|p) +b(p) iMx|-p)      forp>0| ^^^ 

X(x|p) = !Mx|p) + r(p) ^(x|-p)      for p < 0 I 

Next we proceed to Part I of the proof of the Gel'fand-Levitan algorithm.    In this part of the proof 

we shall show that 

m\p) 
ipx 

I7TT    •-'    oo \f2ir      4ZT! ^■-
M 

rw.x 

K(x,y) eipy dy 

(50) 

s.x   px Np^iy 
il>(x\E.) = e"      1    +  \        K(x,y) e dy 

1 ^-OO 

satisfy the equations (47) when (45) is satisfied.    It is immediately apparent that ^(x|P) as given 

by (50) satisfies the boundary condition(48). 

t The Riemann-Lebesque theorem (Lighthill, Introduction to Fourier Analys.s and Generahzed Funcfops, p.46) 
tates that:   If b(p) is an ordinary function absolutely integrable from-« to «.. then its Four.er trans orm -0 as 

| xj-!!     However, b(p) in this case consists of a given set of values and is therefore certamly absolutely In- 

tegrable over (-00,00). 
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' 

Next we calculate (d /dx ) ^(xlp) +p ^(x|p). 

d    ,,   |   ,      . pe P     ,   K(x,x)     ipx ,1      f      ... 

NTZTT '■JZ-K N/ZTT 
y) eW dy 

d''    ,,   i   , 2 e ^     ,   ipKfx.x)    ipx  ,   e ^      d   ...       , 

dx VZTT NTZTT 

K (x,x) 
+ JXIZ_: eipx + —i- \       K    (x, 

/T-   J XX 
y) elpy dy 

where 

K  (x,x) = -f-  [K{x,y)] 
XV    '     ' dx   L     V    '■''Jly=x 

Ky(x,x).^[K(x)y)]ly=x      . 

Integrating by parts and making use of the fact that as x —-■»,  R(x) -> 0,  and therefore also 

K(x,y) — 0,  we have 

(51) 

, 2    ipx 
p>(x|p) = £—' ^  f    K(.,y)p2eipy 

dy 

= p2 eipx _  ipK(x.x) eipx +__L r    K (x, y) ip elpy dy 

p"" eIpx _ lpK(x,x)  eipx + 
K (x,x)     . , 

y gipx _ _ i 

2;r Z- ZTT N/YTT 

J      Kyy(x,y)eipydy 

Hence, 

dVjjL)  n-pZ^lp) =^ {;d   [K{X)X)] +Kv(x,x) +Kv{x,x)} 
dx •/ZTT 

dx 

.w 

2 e ipx 

K[K(x-x)i+^rjK^ Vzi 
i-K^x.yjJe^dy     .     (52) 

Since 

Kx(x,x) +Ky(x,x) = ^ [K(x,x)]      , 

we proceed to find an expression for K    (x,y) - K    (x,y).    We have 

K(x,y) = -R{x +y) \      K(x, 

yy 

z) R(z + y) dz 

(53) 
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Hence, 

Then 

K (x,y) = -R'lx +y)-K(x,x) R{x +y)-  \       K (x, z) R(z + y) dz      , 
X J_00 X 

i 

K    (x,y) = -R"(x +y) -K(x,x) R'(x + y) - ^  [K(x,x)] R(x + y) XX ox 

-K (x,x) R(x +y) -  \        K    (X,z) R(z + y) dz      , 
•^  -DO 

K.(x,y) = -R'(x + y) -  \       K(x,z) R'(z + y) dz 

=-R'lx + y)-K(x,x) R(x +y) + \       K (x, z) R(z + y) dz 

K    (x,y) =-R"(x +y)-K(x,x) K<{x + y) +  \        K (x, z) R^z + y) dz 
yy ^ -OO 

=-Rn(x+y)-K(x,x) R^x+y)  H K (x,x) R(x + y) - \       K    (x, z) R(z + y) dz 

Kxx(x,y) - Kyy(x,y) = -{^ [K{x,x)] + Kx(x,x) + Ky(x,x)} R(x + y) 

-\       [Kxx(x,z)-Kzz(x,z)]R(z+y)dz      , 

or using (53), 

K    (x,y)-K    (x,y) = -2 ^ [K(x,x))R(x +y) 
yy 

- \       [K    (x,z) -Kzz(x,z)] R(z +y) dz (54) 

This is an integral equation for K    (x,y) - K    (x,y).    Let us try to find a solution in the form 

Kxx(x,y) -Kyv(x,y) = L(x,y) 2  ^ [K(x,x)] 

Substituting (55) in (54),  we obtain 

L(x,y)   ;-R(x+y)-\       L(x, z) R(z + y) dz 

(55) 

(56) 

Hence,  L(x,y) satisfies the same equation as K(x,y).    If we assume that this equation has a unique 

solution, then L(x,y) = K(x,y) and 

d K    (x,y)-K    (x,y) = 2K(x,y) ^ K[x,x] (57) 
yy 
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Using (57) in expression (52), we obtain 

d!Mp)   +p2^(x|p) = i^ji[K(XjX)] 

dx V^F   ax 

+ -^   C      2K(x,y)  -^ [K{x,x)]elpydy 

ax i-Jzi       4zi J-°o I 

2 ^ [K(x,x)] !/.(x|p) 

Hence,  if 

V(x) = 2 ^  [K(x,x)] 

then 0(x|p) satisfies Eq. (47).    The proof for !/i(x| E^ is identical.    This completes Part I of the 

proof. 
In Part I of the proof of the Gel'fand-Levitan algorithm we have shown that the i/'(x|p) and 

tMx|E.) as given by (50) satisfy the equations (47). Also, i/)(x|p) obviously obeys the boundary 

condition (48).    In Part II of the proof we shall prove the following completeness relationship: 

poo n« 
\       ^(xlp) ^*(x,|p) dp +  \        iMx|p) b(-p) i/^U'l-p) dp 
J-00 J-*> 

Wx|E)0(x'|E) 
+  V    5_ L   = 6(x-xl)      . (58) 

i 
i 

We shall then use this completeness relationship to show that the (Kx|p) ar« linearly independent, 

that the ^(xlE.) are quadratically integrable, have the normalization Aj, and are therefore the 

point eigenvalues of the Schrödinger equation (47),  and finally,  that the b(p) as used in (43) are 

indeed the reflection coefficients of the Schrödinger equation. 

Let us first prove (58).    For x > y we have 

K(x,y) = -R(x + y)- 1     K(x, z) R(z + y) dz 

J^ETU+y) 
,    r*        f" , ,  .    -ip(z+y) .       rX  V K(x,z) e . 

= _R(x + y)_^L\     dz^      K(x,z)b(p)e    p(    y   dP-yMl T. d 

= _R(X + y) _ _^  p [^(x|-p)_ ^-]b(p) e-W dp 
sflrr J_oo 1. V27r    J 

bixJE^-e je 
I A. 

i 
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Therefore, 

i     Cx ■ Wxl E.) e 
K(x,y) = --i-       Wx|_p) b(p) e-ipy dp _ y     '  - 

-v 
NTZTT J-<X A. (59) 

Also, 

K(x,y) -r 
-i 

0(x|-p) b(p) 

0(x|E.) 

'/'(yl-p) — \       K(y,z) e"1132 dz dp 

*{y|E.)- \       K(y,z) e"     1   dz 

!Hx|E ) ^(y|E ) 
0{x|-p)b(p) 0(y|-p)dp-   2   \  

i + K(y,z) 
,     nx ^(x| E.) e 
-- *(xi-p) b(p) e"lpzdp +7 — 

•E.z 
i 

A. dz 

But, according to (59),  the expression in brackets in the last integral is just -K(x,z).    Hence, 

rearranging terms we now have 

f" , v,  *(x|E)0(y|E) 
\       0(x|-p) b(p) 0(y|-p) dp  I-  2, -T L  = -K(x.y) 
v -oo i 

-r K(y,z) K(x,z) dz (60) 

This is true for x > y.    However,  the left-hand side of (60) is symmetric in x and y  so that for 

x < y we have 

/-voo 

\      iMy|-p) b(p) *(y|-p) dp + V 
iHy|E.) 0(x|E.) 

= -K(y,x) 

\        K(x,z) K(y.z) dz 

Introducing the Heaviside step function, 

1       when x > 0 
i)(x) -- 

0       when x < 0 

and replacing p by —p in the integral on the left-hand side,  we finally have 

\       !/-(x|p) b(-p) ^'(yl-p) dp +  ^ 
^(xlE.) i/-(y|E.) 

(61) 

A. 
-7){x - y) K(x,y) - r)(y - x) K(y,x) 

z r,(x-y)^       K(y,z) K(x,z) dz-T)(y-x)   I       K(x, z) K(y, z) dz (62) 



■ 

Next,  using {50),  we write 

\        lf(x|p) !/-••'(y | p) dp = J 
ipx .      r'X 

+ ■ K(x, z) e"^" dz 

But 

Alsc 

   +   \        K(y,v) e    '     dv    dp 

L r eip(x-y) dp + _i ry K(y,v)dv r 
V   _Dfl ^   -00 ^   - 

1   l'x    ,.,      >   ,     f        ip(z-v)   , f T,— \       K(x, z   dz  \       e ' '    - ' dp 21 J.„ J.«, 

e'P^^' dp 

i rx (■■V 
■£■  \       K(x,z) dz  \ 

y    ■-,      vi    r        ip(z-v)  , My, v) dv   \        c ' v dp 

y) dp = 27rö(x - y) 

Af    K(y,v)dv  f    e1^-'dp - f K(y,v) ö(x-v) dv 

A  CX    K(x,z)dz  f    e^^-y'df 
271    J-oc J-» 

K(y,x)      when x < y 

0 when x > y 

i)(y - x) K(y,x) 

K(x,z) 6(7. -y) dz 

K(x,y)      when y < x 

0 when y > x 

T)(x -y) K(x,y) 

if    K(x..z)dzCy    Kiyvldvf    e^^^ dp      f    K(x, z) dz f     K(.y, v) dv6(v - z) 

=   \        K(x, z) K{y, z) dz      when x > y 
-'-OO 

=   \        K(x,z) K(y,z) dz      when y > x 

= T)(x - y)   ?     K(x, z) K(y, z) dz 4- n(y - x) J      K(x, z) K(y, z) dz      . 
V —on 
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Hence, 

\        i/)(x|p) ^*(y|p) dp = ö(x-y) +7](y-x) K(y,x) +T){x-y) K(x,y) 

f7)(x-y)   \       K(x,z) K(y,z) dz f j)(y-x)   \        K(y, z) K(x, z) dz 

Adding (62) and (63),  we obtain 

\       iMxlp) r;!(y|p) dp + \      ^(x|p) b(-p) !|i*(y|-p) dp 

^xlE.) !My|E.) 
L 
1 

A. 
- 6(x-y) 

(63) 

This completes the proof of the completeness relationship (58). 

A direct consequence of (38) is that any quadratically integrable function f(x) can be expanded 

in the following manner: 

.-WO 

(x) =   I       Wx|p) a(p) dp +  Y_   *(xlEi) ai (64) 

where 

a(p) =   (       f(y) **(y|p) dy f \       t(y) b(-p) **(y|-p) dy 

(•»   t(y) iMylE^ vi A. 
dy 

(65) 

(66) 

Let us treat two special cases; 

(a) f(x) -- i,''(x|p)      , 

(b) f(x) = ^(x|E.) 

*(x|p) is not quadratically integrable, but it is still symbolically possible to treat case (a). 

(a)   When f(x) = i/i(x|p),  we see at once that in this case we must have 

a(p) = 6(p-p')      , 

a. = 0 
i 

The first of these gives 

p    ^(ylp') **(y|p) dy + f    '/'(ylpMM-p) ^"(yl-p) dy = <5(P-P')   .(67) 

The second gives 

-«   ^(ylp') «ylE^ r dy = 0 (68) 

Hence, the i|i(x|p) and ^(xlE^ are orthogonal. 
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(b)   When f(x) = ^(x|E.), we see at once that in this case we must have 

a(p) - 0      , 

a. = 6.. 

From the second of these we obtain 

iP{y\E) </'(>■! E.) 
dy = ö.. 

j      WylE.^ylE^dy = Ajö..      • (^9) 

Hence,  tlio (/'(xtK.) are quadratically integrable and have the proper normalization. 

We shall now prove that the b(p) as used in the Gel'fand-Levitan algorithm are indeed the 

reflection coefficients. 

Let us consider the outgoing wave,  i.e., \(x|p) for p > 0, and assume that the reflection coef- 

ficient is b(p) and not b(p).    With the help of the completeness relationships for ^(xlp) and x(x|p), 

we shall show that b(p) = b(p). 

Since xixjp) and ^(x|p) are solutions of the same Schrodinger equation for different boundary 

conditions,  we may write x(x|p) as a linear combination of the »wo ["dependent solutions (Kx|p) 

and ^(x|-p).    We write 

X(x|p) = 0(x|p) +b(p) ^xl-p)     forp>0      . (70) 

We have chosen ii'(-x|p) so that it satisfies the boundary condition (48), and as a result of this x(\\p) 

as given by (70) will satisfy the correct boundary condition 

ipx       r.   ,    -ipx 
lim   v(x|p)=^+^^       [orp>0 

X —-oo S/ZT! \'2- 

A 

However,  the x(x|p) satisfying this boundary condition is unique, and hence b(p) is the reflection 

coefficient as defined previously. 

Similarly,  uniqueness of a solution for a given boundary condition gives us 

X(x|p) - t(p) i/(x!p)      lor p < 0       . (7 1) 

t(p) is the transmission coefficient, and  |b(p)!     + |t(p)|     =  1 for all  p. 

Again we choose the proper eigenfunctions x(x|E.) and ^(xlE.) to be identical and to have the 

same normalization A..    We might point out that since K(x,y) U real,  iHx|E.) and x(x|E.) are real. 

We now have the completeness relationship (11) for the x(x|p) and X'(xl Ei)' namely, 

r« „ x(x|Ei) x(-'|t;i) 
\       X(x|p) X*(X'|P) dp +  L — A. 

i 
= o(x - X1 

and the completeness relationship (58) for the i/i(x|p) and Wx|E.) = x(x|Ki),  namely, 

n  if(x|E.) (/-(x'lEj) 
\      ^(x|p) !/i*(xl|p) dp + \      i/'(x|p) b(-p) i/i*(x,|-p) dp + X A. 

1 

ö(x -x') 
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Let us consider (11) and substitute x(x|p) from (70) for the range 0 to « ,  x(x|p) from (71) tor the 

range-« to 0 and x(x|E.) = ^(xlE^.    Then we obtain 

\     if(x|p) 4''*(x'|p) dp +  \     !Hx|p) b*(p) ^'(x'l-p) dp 

«Jn "0 
h\    b(p) *(x|-p) ^*(xl|p) dp + \     |b(p)|    Wxl-p) ^(x'l-p) dp 

>o Jo 

f\   it(p)r ^(x|p) rMx'ip) dp + >, -    -x-      =ö(x 

W -oo 
1 

(72) 
i 

We note'at once that 

r |b(p)|2 i|'(x|-p) **(x'|-p) dp -   (        |b(p)|Z *(x|p) **(x1|p) dp      . 
JQ J-OO 

Also,  since |b(p)|2 + |t(p)l2 = 1,  we can add the fourth and fifth integrals of (72) and obtain as 

their sum 

.0 
\       i/.(x|p) ir(x'|p) dp 

This integral in turn,  when added to the first integral of (72),  gives for their sum 

/■voO 

\       ;Mx|pH*(x'|p)'!p     • 

Finally,  we note that since b(-p) = bMp). 

I"" *(x|p) b*(p) «♦{x'l-p) dp + \    b(p) *(x|-p) v''':'(x'|u) dp 
J0 

J0 

=   I" .Mxlp) b(--p) ^'(x'|-p) dp +  (       b(-p) *(x|p) **(xI|-p) dp 
J0 J-co 

-   \       i.Mx|p) b(-p) **(x,|-p) dp      . 
J -oo 

With these simplifications,  (72) now becomes 

\        i/'(x|p) i/'^x'lp) dp  "-  \       dx|p) b(-pH'!'(xT-p) dp 
J -co J-"> 

i//(x|E.) Wx'lE.) 
V .:_!_i L=6(x_x')      . (73) 

ü 
i 

It now appears that,  as a consequence of (73), we can expand any quadratically mtegrable function 

t(x) in the following manner: 

/-»oO 

f(x) =  \       Wxlp) a(p) dp + 2, '/'(x|Ei) a. 
J -oo 
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... .   . . . . 

where 

poo pot 

= \      f(y) r;t(y|p) dy + \ 

p    f{y)^(y|E.) 

f(y) b(-p) ^*(y|-p) dy      , 

dy 

However,  it follows immediately that 

a(p) E a(p) 

where a(p) is given by (65).    Hence,  for any quadratically integrable function f(x) we must have 

for all p 

y [b(-p) -b(-p)l    \ f(x)  i/.(x|p)  dx  E   0 
J -x 

A 

This can be true only if b(p) = b(p) for all p. 

V.    SOME EXAMPLES OF THE SOLUTION OF INVERSE 
SCATTERING PROBLEMS 

We shall now give some examples of the extreme potency of the Gel'fand-Levitan algorithm 

and show how it can be used to reconstruct the entire scattering problem from the scattering 

coefficients. 

A.    The Delta Function Potential 

First let us consider the case for which there are no bound states and 

A e-ZiaP hip) = -i  2 
p + -y 

This reflection coefficient is of the proper form,  since it satisfies the relations 

b(-p) = b*(p)      , 

lim     b{p) = 0      in the upper half plane 

(74) 

In this case,  we now have 

R{x) 47r J 

«o      -ip(2a+x) 

: IA   
dp P + T 

(75) 

Evaluating the integral in the usual fashion by contour integration,  i.e.,  closing the contour in 

the upper half plane when x < -2Q,  we obtain 

R(x) = 0      for x < -2a 

Similarly,  closing the contour in the lower half plane when x > — 2Q:,  we obtain 

A 

A    -^"(
X+2Q;

) 
R(x) = — "T e when x > — 2a 
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Hence, 

A 
■ylx+Za) 

R(x) = - Y ')(x + 2a) e 

The Gel'fand-Levitan equation for x > y is then,  for the given example, 

-y(x+y+2a) 
K{x,y) = ^ 77(x +y + 2a) e 

«    px --^(z+y+Za) 
+ ^  \        K(x,z) IJ(2 +y + 2a) e dz      . 

Wc note than when 

(76) 

(77) 

x + y < — 2 n 

z + y <-2n 

and 

K(x,y) = 0      , 

and hence also 

V(x) 5 0 

Equation (77) suggests that we write 

K(x,y) = 7)(x + y + 2a) g(x,y) 

Substituting tliis expression for K(x,y),  we obtain 

A -4(>:+y+2a) 
i)(x  f y  I 2a) g(x,y) =  -j i)(x + y + 2a) e 

px - -jiy+z+Za) 
f-^   \        ?)(x + z + 2a) 7)(y + z + 2a) g(x,z) e     ^ dz 

Consider the product of two step functions.    Evidently, 

I T)(X - a)      when a > b 

| i|(x - b)      when b > a 

= i)(a - b) i)(x - a) + T|(b - a) nix - b) 

Hence, 

))(x + z + 2a) 7;(y + z + 2a) = r|(y - x) j/(x + z + 2a) + i)(x - y) i|(y + z + 2a) 

= 7)(y + z + 2a) 

since x > y. 

Using this expression for the product of the step functions,  we now have 

(78) 

T)(x - a) i)(x - b) = 
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A 7)(x + y + 2a) g(x,y) = y J](x + y + Za) e 
■y{x+y+Za) 

A   px --jiy+z+Za) 
(y + z + 2a) g(x, z) e 

A ~ 
A -ylx+y+Za) 

= "2  'iix + y + 2a) e 

+ y 7)(x + y + 2a)   \ g(x,z)e dz 
J-(y+2a) 

We have already shown that, for x + y + 2a < 0,  K(x,y) - 0.    Hence we now treat the case 

x + y + 2a > 0 so that i7(x + y + 2a) = 1.    Then 

-4(x+y+2a) rx -4(y+z+2«) 
g(x,y) = y e    " + f g(x, z) e dz 

^ J-(y+2Q) 

-4{y+2a) 
e f(x,y) (79) 

where 

A 
<•/       i      A     ' 2X x A o-Aa   C f(x.y) = T e + -2 e j 

-(y+2a) 
e'Az f(x.z) dz (80) 

and 

df(x.y) _ A f.A(y+a) e^""' f(X;_y _2a) 

We can satisfy (81) by letting 

A 
"2y 

nx.y)-^^    v(x) 

(81) 

and substituting in (80) we obtain 

A A A 
v(x)=   A     -2X

+Ae-Aav(x)   f /Z    dz 

^ ^ J-(y+2a) 

A     ' 2X        -Aa     ,   , y e - e v(x) 

which gives 

,  .      A    Aa v(x) =   2 e 

Hence, 

f(x,y) = f ez 

.|x       |(y+2a)] 
e - e 
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and 

Then 

g(x,y) =  y 

A K(x,y) = ?)(x + y + 2a)  -^ (82) 

and 

V(x) = 2  ^  fK(x,x)l 

= Aö(x + a) 

Having determined K(x,y),  we can now also find the eigenfunctions !f(x|p): 

5iPx 
*{X|P) --3~ +-^r ■qiy + x + 2cv) e ' ^ dy 

(83) 

ipx , I'X 

  + -JL- ')(x +a)   \ 
■V/ZTT       2s^2ff J-(x+2a) 

.W dy 

ipx 
Ai Ai 

[1-^ nU +«)) + ^r)(x fa) e 

From this we see at once that !/'(x|p) satisfies (48), namely, 

<>x 
for all p 

-2ipa  e^ 
•ipx 

«/ZU 

lim   i/'fxlp) 

(84) 

Also, 

ipx 
dMp)  = ip^JL [l_Ai 7)(x + „„ _ Ai 6(x + a) ^ sz ■s/Tif 

2p 2p 

Ai   ., .    -2ipo  c ,  A    ,     ,     . „ 
+ j- ö(x H a) e      '       -m- + — 'l(x + «) e ip 

\f2T: 

-2lpQ'    c     ' 

N/ITT 

ip o ' A   f Ai 6(x + a)  (e-2ipa e-ipx _ oipx) 

sfz; 211       V2¥ 

,  A i;(x + a)  .ipx + e-2ipa g-ipXj 
2      ^27 

=  ip elpx  + A q(x + a)  {eipx + e-2ipa g-ipXj 

V2¥ 2       NTI^ 

dZ^(x|p) 

"   dx2 

2  e A 6(x + a)  (eipx +e-2ipa g-ipXj 

M27r 27r 

ipA i|(x + a)  .ipx _ e-2ipa g-ipx. 

N/TTT 

33 

nli i 



ifiniaaaii-lMlsxmiar     . ~ '    --,.,.:•,..-. ■•;-■.-. ■.■-■»..s.-.i  i.-.i^i-ii, - 

'»(xlp) =     -2 elpx + ipA 7?(x + a) (eipx _ e-2ipa g-ipXj + _A_ e-ipQ 

dx2 Vavr       "^      \^ -JZ* 

Hence, 

2       i T   I   IPX »■ 
_dj^xip)   +v(x)^x|p) = p

2     5_   [!_ Ai ^x + a)] 

dx IV2T 

-ipx 

2p 

,  Ai    ,    ,     ,    -2ipa e + j- j)(x + a) e      r     -  
A       -ipa 

- e   r 

+ A6(x + a) 
„ipx Ai ,,      Ai    , ,    -2ipa  e 

[1 - ^i r,(x +«)] + ^7 itx  ha) e      ' 
-ipx 

l^1        ^ 2p 2« 
P 0(x|p) 

!/)(x|p) satisfies the Schrödinger equation: 

+ A(5(x + a) 
dx 

i/)(x|p) = p ^(xlp) (85) 

subject to the boundary condition 

ipx 
lim     iMx|p) =   

x—-«: sfzir 
for all p 

and hence for p > 0, 

X(x|p) = Wx|p) +b(p) ^(xl-p) (86) 

is the unique solition which satisfies the same Schrödinger equation subject to the different bound- 

ary condition 

aipx -ipx 
,**     e        4. b(p)e 

lim   x(x|p) - -—" + ,— 
x->—oo VZTT •^2^ 

Substituting in (86) from (74) and (84),  we have 

X(x|p) = Wxlp) +b(p) ip{x\-p) 

X [1 - ^ U{x + «)] + ^ n(x fa)e 
-/2¥ 2p 

,. -ipx 
-Zipa e 

2   ,„  ,  iA,   ,n^ 2p 4p(p +i£)4zi 
(p + -y)    V2T 

C
1PX Aii](x + a) _ A i)( 

2p 4p(p 

x  ! a) 

+ i4)l 

3-ipx 
+ ■ 

Ai 
At t1 + 2p ^ + a)] I „-2ittp 

P "I 

Letting x -»,  we can now also find the transmission coefficient t(p): 

^ 7)(x + a) - -r1 - ;;> 
2P Z (P + X5 
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elpx 

lim   x(x|p) = =—— 1 - Ai 
^P 

A 
TA 4p(p + ^M       V^F 

.-ipx Ai      Ai(1 + I?> 
2P       2p  (1 + g") 

-Ziap 

or 

where 

pipx 
lim   x(x|p) = t(p) ——- 

tip) = 1 - 
Ai _ A 
2p       2p(2p + iA) 

or 

Also, as has been shown to be generally true. 

and 

t(-p) 

|b(p)|2 + |t(p)|2 

-ZP =  —ifi^r   = t*(p) 
-2p + iA       2p - IA 

«2 ,   2 A 4g         _  . 
—? 7 + —2 ? " 
4p'i + A^ 4p': + A" 

(87) 

We can also find r(p), the reflection coefficient, from the other side by proceeding in the following 

manner. 

For p < 0, 

ipx 
lim   x(x|p) = s(p)  

x-*-» v27r ' 

It was shown earlier in this report thai 

s(p) = t(p)      for all p 

Hence, we write for p < 0; 

X(x|p)   =   S(p)  !Mx|p) 

zp 
2p - iA 

p^1x Ai ,,       Ai     , ,     -2ipQ   e    P 

In order to find r(p), we now let x - +«> and find 

lim   x(x|p) = 
2p 

ipx Ai,   ,   Ai „-2ipa  e 
ipx 

(1 - ^-) + T— e 
^ 2P       2p 2p - iA 

elpx  ±      Ai -2ipa  e 

N/ZTT 

P5-   T 2p - Ai 

-ipx 
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Hence, 

,  , Ai -Zipa 
r'P' = Ti^Ti e 

We might note that only for a = 0 do we have r(p) = b(p) for all p. 

Before proceeding to further examples,  we emphasize again the extreme potency of the 

Gel'fand-Levitan algorithm.    In the previous example,  we have reconstructed the entire scattering 

problem from a knowledge of the reflection coefficient on one side.    We have found the potential 

function producing this reflection coefficient, the corresponding eigenfunctions of the Schrödinger 

equation, the transmission coefficient,  and the reflection coefficient on the other side. 

B.    Reflectionless Potential 

In this example, we shall use the Gel'fand-Levitan algorithm to construct a reflectionless 

potential. 
We put b(p) = 0, and let us also assume that there is but one bound state,   E^ having a nor- 

malization A..    Then 

J-E.x 

R(x)=V-     ' (88) 

E^x+y) J-EjUi-y) 

K(x,y) = - K(x,z) dz 

s/^V 
A4 

E,s ■ r /-E.x    px \y~'ji' 
eV +  \       K(x,z) e j dz (89) 

Equation (89) suggests that we write 

-E.y 

K(x,y) f(x)       , 
(90) 

where 

or 

f(x) =   e 
•El* 

'  A1   J. 

2 /-EjZ 
dz 

Klx      f(x) e 
2./-E1x 

2At^-El 

(91) 

f(x) 
2M-Ei 

ZAfEle -Elx       J-Elx 

+ e 

(92) 

and 
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K(x,y) 
-zf^i 

f^ll 

■J'EiX i     -N/"
E

1
X 

/-El e ̂
-Ei(y-xo) 

sech N/-E1 (x-xo)     , (93) 

where 

'o = T^= ln 2Ai J^ 2 /- E 
(94) 

Hence,  wc obtain a rel'k'ciionless potential V(x) given by 

V(x) - 2 gi [K(x,x)l = 2E1 sech'^-Ej (x - x  ) (95) 

Also, 

V2^ 2r    ^-« 
sech J-Ej (x-xo! elpy dy 

  /-E,(x-v )    . 
eipx sech^-Ej (x-xo)e

v 0elPx 

(^-Ej + ip) N(2^ 

e^PX i _ J^i^'^^^-y^ JlX x" 
(V/-E1  + ip) 

(96) 

Since b(p) = 0, 

X(x|p) 
V27 

/—E. sech ;-E. (x — x ) e v      1 v      1 o 

^rW i ip 

-E.(x-x ) 1 1 o 

(97) 

In order to determine t(p),  wc consider 

lim   x(x|p) - 
x — °o sTir 

2 /- E. 

/- E,   l- ip J 

Hence, 

Up) 
P - v-^; 

(98) 

We may now write for p < 0, 

.ipx  (p - i^-E^ 
X(x|p) = 

■-/ZTT   (p + iJ-E^ 

■E. sech /—E. (x - x ) e 1 V       1 o 

-Kl(x-xo) 

-E,  f ip 
(99) 
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Then 

ipx 
lim   x(x|p) 
X-»oo 

and hence r(p), the reflection coefficient on the other side,  is also zero.    That this must be so 

is apparent at once from the relations 

|b(p)|2 + |t(p)|2 = 1 

|r{p)|2 + ls(p)!2 = 1 

for p > 0 

for p < 0 

s(p) = t(p)      for all p 

Finally,  we might mention that in this case 

-E.x E x r*- 
XixlEJ = ^(xlEj) - ev      1    -j^ ] 

f-K^      ^E[ sech^^x - xj e 

x    fE'l{Zy-*0) 
sechl-K^ (x - x  ) dy 

-E^Zx-x^ 

2 /-E^ 

■Elx 

sech /-E V-Ei(x--V 
(100) 

Again the entire scattering problem has been reconstructed with the help of the Gel'fand-Levitan 

algorithm. 

VI    REFLECTION COEFFICIENTS FOR POTENTIALS 
WHICH VANISH IDENTICALLY FOR x <-« 

Unfortunately, the potentials we have been obtaining so far are not of practical interest,  since 

they do extend to infinity and are therefore impossible to construct in actuality. 

We shall next give conditions on the reflection coefficient b(p) which will result-in potentials 

which will be identically zero on one side at least. 

We first prove the following theorem: 

Theo" em 

If R(x) 2 0      tor x <-2Q 

Then V(x) E 0     for x < - a 

We hope to be able to choose b(p) and the point eigenvalues E. so that R(x) = 0 when x < -2« and 

thus obtain a corresponding potential V(x) which is identically zero for x < -a.    To prove the 

theorem,  we use the Gel'fand-Levitan equation for x > y: 

K{x,y) =  -R(x +y) f K(x,z) H(y + z) dz 



:■ 

if 

then 

and 

hence, 

Also, 

antl hence 

and 

Therefore, 

and 

x < —a      , 

y < -a 

x + y < — 2 a      , 

R(x + y) = 0 

z < x < - a 

y + z < — 2 a 

R(z +y) =   0      . 

K(x,y) £ 0      when x < —a 

V(x) = 2 y; [K(x,x)l £ 0      whenx<-ö 

This completes th«. proof of the theorem. 

Let us now consider b(p) in the complex plane.    Suppose b(p) has poles at p = itj where T^ > 0. 

We shall show that,  if Ej = -Tj   and A; is chosen properly,  we will be able to make R(x) = 0 for 

x < -2«; hence, b(p) will be the refleqtion coefficient for a potential V(x) which is identically zero 

for x < -o. 

Assume that b(p) has the form 

i_/  i        i   \    -2iQp b(pl = g(p) e 

where 

g(_p) = g':c(p) on the real axis I 

g(p) = 0(p"K+ )       where K > 1 ' 

and g(p) has poles of residue r. at the points 

Then 

p^r^i^-E^O 

(101) 

(102) 

(103) 

R(x) 2¥ )       S(P) 
** -an 

■iD(x+2a) dp + T. 
i 

J^S 
A. 

(104) 
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When x < —Za, 

± g(p) e-iP^) dp = i 2  r. e       i 

i 

a r.+T.x 
J 

2aT.    ./-E.x 

Hence,  if we choose A. so that 
J 

A: = -irje 

J J 

then R(x) = 0 for x < -Za, and hence V(x) ; 0 for x < — a. 

As an example,  consider the case where 

b(p) = ^ 
LB  e 

■2iap 

iB 

I!" 
r 

In this case, 

± f b(p, e-^ dP = g y 
"o    e-ip(x+2a) 

iB dp 

(105) 

(106) 

Hence, 

If we choose 

then 

K(x) 

|eB"e2'      forx<-2a 

B ^x 
BeBae2    +c forx<_2Q 

M 

J_       B     Ba 
Ai        2  e 

(107) 

(108) 

R(x) s 0      for x < -2a 

When x > -2a,  we close the contour used to evaluate the integral in the expression tor R(x) in 

the lower half plane.    This contour contains no poles of the integrand,  and hence in this case the 

value of the integral is zero.    Then 

R(x) B     2 
B,    , ,    ^ 

for x > —2a (109) 
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We now have 

B f(x+2cv) 
R(x) =  -j  Vi^ l 2d) e 

and for x > y, 

B -^-(x+y+^o) 
K(x,y) = --g J)(X + y + 2a) e 

r B 
K(x, z) t)(y f z + Za) e ' 

(y+z+Za) 
.17 

when 

and 

and hence, 

x < —a 

x +y < —2a 

z T y < — 2 a' 

K'x.y) = 0       . 

V(x) = 0       . 

Equation (111) suggests that we write 

K(x,y) = i](x +y + 2«) g(x,y) 

and, proceeding as in a previous example given in this report, we obtain 

g(x,y) 2 

K(x,y) - -|  >)(x  ly  )-2Q.)       , 

V(x) = -B6(x + a) 

As we expected,  this potential is identically zero for x < -a.    Suppose now that 

, ,   >      113  1 
b(p)      T -       iH 

!' - -r 

and that there are no point eigenvalues.    We will now not be able to make R(x) = 0 for x 

Let us see what the corresponding potential will be in this case. 

We have 

(110) 

(111) 

(112) 

(113) 

(114) 

(115) 

(116) 

-2a. 

H(x) 

B . 

|  e E for x < 0 

U) for x > 0 

B, 

R(x) = -| JJ(-X) e2 (117) 

41 

-                •       *    ''■'■--■■- 



Hence, for x > y, 

B 1(x+y) 
K{x,y) =   2  IJ{-X -y) e If K(x,z) r)(-y - z) e 

f(y+z) 
dz (118) 

The solution of this equation may be shown to be 

t(x+y) flx-ty) 
K(x.y) =  B'l(   X) e„v 1- f i7(x) -)(x + y)  I BJJ(X) ,,(-X - y) e 2 

2 -e 
Bx 

(119) 

Then 

Klx.x) 
Bi;(-x) e 

Bx 

2 - e 
Bx •j ')(x) (120) 

and 

V(x) = 2 ^ [K(x,x) 
._2   ,     .    Bx 
4B  i)(-x) e 

(2-eBx)2 

IT,2   ,     ,    Bx 4B T)(-x) R 
,-        Bx,2 
(2 - e     ) 

/.      o    Bx v 

-Bö(x) 

Hence,  in this case the potential has an exponential tail for x < 0. 

Finally,  let us consider as an example the case for which 

b(p) 
-2ia:p 

(p + i) (p - i) 

El=-1 

In this case. 

R(x) i r   e-ip(xf2n)   ,    £, 
■■* J_M  (p+i)(p-i) ap+ A1 

(121) 

(122) 

(123) 

When x < -2a,  the exponent in the integral is positive, and we close the contour in the upper half 

plane.    Evaluating the integral thus,  we obtain for x < -2a; 

.     fva -ip(x+2ü■) X+2Q' ~ -iln..r..M e^'~" x e 
-   \ T-2—rr-, rr dp = -1   —^-.—   - - e     - 
* J.„   (P + i) (P - !> 2l IT 

If we choose 

Za 

A1 2 
(124) 

then R(x) = 0 lor x < -la, and from the theorem we expect V(x) = 0 for x < -a. When x > -2a, 

the exponent in the integral is negative, and we close the contour in the lower half plane. Thus 

we obtain for x > —2a: 

e-ip(x+2a) ^ri e-X-2g -x  e'2" 

(p + i) (p - i)  AV ~   27r     (-21)    "     e 2 ■ 
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Hence, 

-2a Za 
R(x) = -e       ^-~ + e' = sinh(x + 2a)      for x < -2a 

For x > y, 

R(x) = 7j(x + 2a) sinh(x + 2a) 

K(x,y) = -i)(x + y + 2a) sinh(x + y + 2a) 

\        K(x,z) 7)(y + z + 2a) sir:i(y + z T 2O) dz 

We note that when 

hence 

and 

x + y < —2a 

z + y < —2a 

K(x,y) = 0      , 

(125) 

(126) 

V(x) £ 0      when x < — a 

as we expected.    Let us now try to solve the integral equation (126) and find V(x) for x > -a.    If 

we write 

K(x,y) = i)(x + y + 2a) g(x,y) (127) 

then 

7j(x + y + 2a) g(x,y) = -t)(x + y + 2a) sinh(x + y + 2a) 

f'X 
- \       g(x,z) T)(X + z + 2o) i)(y )• z + 2a) sinh(y + z + 2a) dz 

Hence, 

-T](X + y + 2a) sinh(x + y + 2a) 

- \       g(x, z) rj(y + z + 2o) sinh (y + z + 2a) dz 

-i)(x + y + 2a) sinh(x f y + 2a) 

px 
-7i(x + y + 2a)   \ g(x,z) sinh(y + z + 2a) dz 

^-(y+2a) 

g(x,y) = -sinh(x + y + 2a) -  \ g(x, z) sinh (y + z + 2a) dz 
^-(y+2a) 

(128) 
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Also, 

dg^x'y^  = -cüsh(x + y + 2a) -  \ g{x, z) cosh(x + y + 2«) dz 
'-(y+2a) 

•x 
- S^-y^ =-sinh(x+y ■)• 2a) - \ g(x, z) sinh(x + y + 2a) clz - g(x, - y - Za) 

dy^ J-(y+2c') 

*Mil)  =g{x,y)-g(x,-y-2a) 

This is satisfied by 

g{x,y) = v1(x) u(y) + v2(x) 

where u(y) satisfied 

ä-ük.) = u(y)-u(-y-2Qf) 
dy 

From (131), 

and 

u(y) = sinhsTz (y ■!- a) 

(129) 

(130) 

;i3i) 

(132) 

g(x,y) = vjx) sinh \/2 (y + a)   ^ v^(x) 

Substituting this expression tor g(x,y) in the integral equation (128), we obtain 

v  (x) sinhvT(y + a) + v2(x) = -sinh(x + y + 2a) 

rx 
_ \ lv.(x) sinliN/T (z + a) + v;,(x)| [sinh(y + z + 2a)l dz 

J-(y+2a) 

= -sinh(x + y + 2a) - v2(x) [cosh(y + z + 2a)r.(y+2a:) 

-v  (x) sinh[(l + \f2) z H- y + (2 + 41) a] 
1 2(1 + \f2) 

(133) 

ih[(l - NTZ) Z + y + (2 -■ 42) a] 
Z{i-4Z) .' I -(y+2a) 

= -sinh(x + y + 2a) - v2(x)[cosh(y + x + 2a) - 1| 

-v (x)  sinh[x +y + 2a + VI (x + a)] 
1        | 2(1 + 42] 

+  sinhNZ (y + a) 
2(1 + V2) 

   sinh[x + y f 2a -^ (x + a)] 
2(1 -42.) 

sinh42 (y + a) 
2(1 - NZ) 
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or 

0 = -sinh (x + y + 2a) - v2(x) cosh (x + y + 2a) 

-v   (x)  sinh[(x + y + 2a) + ^s/2" (x + a)] 
1        1 2(1 + V2) 

 sinh [x + y + 2a - \/"2 (x + a)] 
2(1 -VT) 

or 

r 

„ x+y+2a'   ,     -{x+y+Zaj ,   ,,  x+y+2o   ,     -(x+y+2a)1 0 = -e    •' +e  v    J - v7(x) [e    J + e  ^    ^        'I 

,   ,   I          1 .  x+y+2a+'vr2(x+a)        -(x+y+2o)-\/2(x+a) -v.(x)  1 [e    ■' l        ' — e  '    ^ 
| 2(1 + sl2) 

1 ■  x+y+2a-"/2(x+a) _    -(x+y+2a)+'/2(x+n), 
- [ C C j 

2(1 -V2) 

vx+y+2a 
.   ,    V2(x+a) ,   .    -^(x+a) 

v  (x) e     v v  (x) c 
1 " v2(x) - -i  + -^  

^ 2(1 + N/2) 2(1 -N/2) 

+    fl-(x+y+2a) 1 -v,(x) + 
v1(x) e 

•V2(x+a) ,  , o\/I(x+a) 
v^x) e 

2(1 + \lZ) 2(1 -N/2) 

Hence, v,(x) and v2(x) must satisfy 

v^x) r 
1 + v2(x) + —y- 

V2(x+a) -V2(x+a) 

1 + N^ 1 - N/2 

v^x)  reN/2(x+a)       e-N/2(x+a)l 
1 - v  (x) j- — 

(134) 

Therefore, 

2 + 
v^x) \1(x+a) [      1 _       1      1   + e-N/2(x+a) |_i L_| 

i + N/2     I-VEJ U + -/z     i - V2J 

+ v.(x)^fe^x+«)+e-^<X+Q)l = = 2 + v^x) 

1 ^2   .  Nr2(x+a), ,  „-\'2(x+ 
[e 

a), NT^ coshN/2(x + a) 
e    ■    '        '1 

(135) 

Also, 

1 + v2(x) + 

^(x+a) _ g-^ix+a)! _^2 |eV2(x+a) + e-^(x+a)]  _ ^ 

p- . N/2(x+a)  , D-N/2{x+a) 
v 2   e + e 

and 
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Hence, 

and 

1    [eV2(x+a.) _ e-^2(x+a) 
v7{x) = i - 

[e     v + e ] 

1    sinh^/Z (x + a) 

sfZ cosh"/2 (x + a) 

1    sinhN/2 (x + a   + smh-v/z (y + a) 
g(x.y) = -—  —  

■v/Z coshvZ (x + a) 

K(x,y) = 
r)(x + y f 2a) [sinh4Z{x + a) + sinh^Zjy + a)] 

4z cosh'Jz{x + a) 

K(x,x) = -sfZT){x + a) tanh*/2"(x + a) 

(136) 

(137) 

(138) 

(139) 

and 

V(x) =  Z ^ [K(x,x)] 

= -47j(x + a) sech   \r2(x + a) 

Hence, again we have obtained a potential which is identically zero for x < -Of. 

(140) 
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